発言者: 太郎
発言日: 2004 05/14 02:27
発言元: p14-dna02yakusima.kagoshima.ocn.ne.jp
Mac OS10.3.2 で桐木さんの ptex package (04年度版 v1.0)
を使っております.しかし,
\ArrowLine が見えません.
どうしたら,見えるようになるでしょうか?
どなたかお願いします.
なお,サンプルとして,
\documentclass{jsarticle}
\usepackage{emath}
\usepackage{emathP}
\pagestyle{empty}
\begin{document}
\begin{picture}(100,100)
\def\A{(0,0)} \def\B{(100,100)}
\ArrowLine\A\B
\end{picture}
\end{document}
を an.tex として保存しています.
なお,そのときの logファイルは以下のようです.
T h i s i s p T e X , V e r s i o n 3 . 1 4 1 5 9 - p 3 . 1 . 3 ( s j i s ) ( W e b 2 C 7 . 4 . 5 ) ( f o r m a t = p l a t e x - s j i s 2 0 0 4 . 3 . 1 0 ) 1 4 M A Y 2 0 0 4 0 2 : 1 4
\ w r i t e 1 8 e n a b l e d .
* * a n . t e x
( . / a n . t e x
p L a T e X 2 e < 2 0 0 1 / 0 9 / 0 4 > + 0 ( b a s e d o n L a T e X 2 e < 2 0 0 1 / 0 6 / 0 1 > p a t c h l e v e l 0 )
( / u s r / l o c a l / s h a r e / t e x m f / p t e x / p l a t e x / j s / j s a r t i c l e . c l s
D o c u m e n t C l a s s : j s a r t i c l e 2 0 0 4 / 0 2 / 2 5 o k u m u r a
L a T e X I n f o : R e d e f i n i n g \ s f f a m i l y o n i n p u t l i n e 3 0 5 .
L a T e X I n f o : R e d e f i n i n g \ t t f a m i l y o n i n p u t l i n e 3 0 8 .
\ s y m m i n c h o = \ m a t h g r o u p 4
L a T e X F o n t I n f o : O v e r w r i t i n g s y m b o l f o n t ` m i n c h o ' i n v e r s i o n ` b o l d '
( F o n t ) J Y 1 / m c / m / n - - > J Y 1 / g t / m / n o n i n p u t l i n e 3 1 6 .
L a T e X I n f o : R e d e f i n i n g \ m a t h r m o n i n p u t l i n e 3 1 8 .
L a T e X I n f o : R e d e f i n i n g \ m a t h b f o n i n p u t l i n e 3 1 9 .
L a T e X F o n t I n f o : F o n t s h a p e ` J Y 1 / m c / m / n ' w i l l b e
( F o n t ) s c a l e d t o s i z e 9 . 6 0 9 9 9 p t o n i n p u t l i n e 3 6 7 .
L a T e X F o n t I n f o : F o n t s h a p e ` J T 1 / m c / m / n ' w i l l b e
( F o n t ) s c a l e d t o s i z e 9 . 6 0 9 9 9 p t o n i n p u t l i n e 3 6 7 .
\ f u l l w i d t h = \ d i m e n 1 1 8
L a T e X F o n t I n f o : F o n t s h a p e ` J Y 1 / m c / m / n ' w i l l b e
( F o n t ) s c a l e d t o s i z e 7 . 6 8 7 9 9 p t o n i n p u t l i n e 4 8 5 .
L a T e X F o n t I n f o : F o n t s h a p e ` J T 1 / m c / m / n ' w i l l b e
( F o n t ) s c a l e d t o s i z e 7 . 6 8 7 9 9 p t o n i n p u t l i n e 4 8 5 .
\ c @ p a r t = \ c o u n t 8 1
\ c @ s e c t i o n = \ c o u n t 8 2
\ c @ s u b s e c t i o n = \ c o u n t 8 3
\ c @ s u b s u b s e c t i o n = \ c o u n t 8 4
\ c @ p a r a g r a p h = \ c o u n t 8 5
\ c @ s u b p a r a g r a p h = \ c o u n t 8 6
\ @ a b s t r a c t b o x = \ b o x 4 1
\ c @ f i g u r e = \ c o u n t 8 7
\ c @ t a b l e = \ c o u n t 8 8
\ a b o v e c a p t i o n s k i p = \ s k i p 4 1
\ b e l o w c a p t i o n s k i p = \ s k i p 4 2
\ @ l n u m w i d t h = \ d i m e n 1 1 9
\ b i b i n d e n t = \ d i m e n 1 2 0
L a T e X I n f o : R e d e f i n i n g \ T e X o n i n p u t l i n e 1 3 9 4 .
L a T e X I n f o : R e d e f i n i n g \ L a T e X o n i n p u t l i n e 1 4 1 6 .
L a T e X I n f o : R e d e f i n i n g \ L a T e X e o n i n p u t l i n e 1 4 3 7 .
\ h e i s e i = \ c o u n t 8 9
) ( . / e m a t h . s t y
P a c k a g e : e m a t h 2 0 0 3 / 1 1 / 2 8 v 0 . 9 9 ? ? ? ? ? ? ? w ノ } ノ N ノ ? ノ p ノ b ノ P ナ [ ノ W
( . / e m a t h 2 e . s t y
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / a m s m a t h / a m s m a t h . s t y
P a c k a g e : a m s m a t h 2 0 0 0 / 0 7 / 1 8 v 2 . 1 3 A M S m a t h f e a t u r e s
\ @ m a t h m a r g i n = \ s k i p 4 3
F o r a d d i t i o n a l i n f o r m a t i o n o n a m s m a t h , u s e t h e ` ? ' o p t i o n .
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / a m s m a t h / a m s t e x t . s t y
P a c k a g e : a m s t e x t 2 0 0 0 / 0 6 / 2 9 v 2 . 0 1
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / a m s m a t h / a m s g e n . s t y
F i l e : a m s g e n . s t y 1 9 9 9 / 1 1 / 3 0 v 2 . 0
\ @ e m p t y t o k s = \ t o k s 1 5
\ e x @ = \ d i m e n 1 2 1
) )
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / a m s m a t h / a m s b s y . s t y
P a c k a g e : a m s b s y 1 9 9 9 / 1 1 / 2 9 v 1 . 2 d
\ p m b r a i s e @ = \ d i m e n 1 2 2
)
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / a m s m a t h / a m s o p n . s t y
P a c k a g e : a m s o p n 1 9 9 9 / 1 2 / 1 4 v 2 . 0 1 o p e r a t o r n a m e s
)
\ i n f @ b a d = \ c o u n t 9 0
L a T e X I n f o : R e d e f i n i n g \ f r a c o n i n p u t l i n e 2 1 1 .
\ u p r o o t @ = \ c o u n t 9 1
\ l e f t r o o t @ = \ c o u n t 9 2
L a T e X I n f o : R e d e f i n i n g \ o v e r l i n e o n i n p u t l i n e 3 0 7 .
\ c l a s s n u m @ = \ c o u n t 9 3
\ D O T S C A S E @ = \ c o u n t 9 4
L a T e X I n f o : R e d e f i n i n g \ l d o t s o n i n p u t l i n e 3 7 9 .
L a T e X I n f o : R e d e f i n i n g \ d o t s o n i n p u t l i n e 3 8 2 .
L a T e X I n f o : R e d e f i n i n g \ c d o t s o n i n p u t l i n e 4 6 7 .
\ M a t h s t r u t b o x @ = \ b o x 4 2
\ s t r u t b o x @ = \ b o x 4 3
\ b i g @ s i z e = \ d i m e n 1 2 3
L a T e X F o n t I n f o : R e d e c l a r i n g f o n t e n c o d i n g O M L o n i n p u t l i n e 5 6 7 .
L a T e X F o n t I n f o : R e d e c l a r i n g f o n t e n c o d i n g O M S o n i n p u t l i n e 5 6 8 .
\ m a c c @ d e p t h = \ c o u n t 9 5
\ c @ M a x M a t r i x C o l s = \ c o u n t 9 6
\ d o t s s p a c e @ = \ m u s k i p 1 0
\ c @ p a r e n t e q u a t i o n = \ c o u n t 9 7
\ d s p b r k @ l v l = \ c o u n t 9 8
\ t a g @ h e l p = \ t o k s 1 6
\ r o w @ = \ c o u n t 9 9
\ c o l u m n @ = \ c o u n t 1 0 0
\ m a x f i e l d s @ = \ c o u n t 1 0 1
\ a n d h e l p @ = \ t o k s 1 7
\ e q n s h i f t @ = \ d i m e n 1 2 4
\ a l i g n s e p @ = \ d i m e n 1 2 5
\ t a g s h i f t @ = \ d i m e n 1 2 6
\ t a g w i d t h @ = \ d i m e n 1 2 7
\ t o t w i d t h @ = \ d i m e n 1 2 8
\ l i n e h t @ = \ d i m e n 1 2 9
\ @ e n v b o d y = \ t o k s 1 8
\ m u l t l i n e g a p = \ s k i p 4 4
\ m u l t l i n e t a g g a p = \ s k i p 4 5
\ m a t h d i s p l a y @ s t a c k = \ t o k s 1 9
L a T e X I n f o : R e d e f i n i n g \ [ o n i n p u t l i n e 2 6 6 6 .
L a T e X I n f o : R e d e f i n i n g \ ] o n i n p u t l i n e 2 6 6 7 .
)
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / a m s f o n t s / a m s s y m b . s t y
P a c k a g e : a m s s y m b 2 0 0 2 / 0 1 / 2 2 v 2 . 2 d
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / a m s f o n t s / a m s f o n t s . s t y
P a c k a g e : a m s f o n t s 2 0 0 1 / 1 0 / 2 5 v 2 . 2 f
\ s y m A M S a = \ m a t h g r o u p 5
\ s y m A M S b = \ m a t h g r o u p 6
L a T e X F o n t I n f o : O v e r w r i t i n g m a t h a l p h a b e t ` \ m a t h f r a k ' i n v e r s i o n ` b o l d '
( F o n t ) U / e u f / m / n - - > U / e u f / b / n o n i n p u t l i n e 1 3 2 .
) ) ( . / e m a t h C . s t y
P a c k a g e : e m a t h C 2 0 0 3 / 1 1 / 1 6 v 0 . 1 6
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / t o o l s / c a l c . s t y
P a c k a g e : c a l c 1 9 9 8 / 0 7 / 0 7 v 4 . 1 b I n f i x a r i t h m e t i c ( K K T , F J )
\ c a l c @ A c o u n t = \ c o u n t 1 0 2
\ c a l c @ B c o u n t = \ c o u n t 1 0 3
\ c a l c @ A d i m e n = \ d i m e n 1 3 0
\ c a l c @ B d i m e n = \ d i m e n 1 3 1
\ c a l c @ A s k i p = \ s k i p 4 6
\ c a l c @ B s k i p = \ s k i p 4 7
L a T e X I n f o : R e d e f i n i n g \ s e t l e n g t h o n i n p u t l i n e 5 9 .
L a T e X I n f o : R e d e f i n i n g \ a d d t o l e n g t h o n i n p u t l i n e 6 0 .
\ c a l c @ d e n o m i n a t o r = \ c o u n t 1 0 4
)
\ e m a t h @ t o k s @ = \ t o k s 2 0
\ S e t t @ w i d t h = \ d i m e n 1 3 2
\ E M c a l c @ A = \ d i m e n 1 3 3
) ( . / e m a t h E . s t y
P a c k a g e : e m a t h E 2 0 0 3 / 0 9 / 1 9 v 0 . 5 9 ? g ? 」 e n u m e r a t e
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / t o o l s / e n u m e r a t e . s t y
P a c k a g e : e n u m e r a t e 1 9 9 9 / 0 3 / 0 5 v 3 . 0 0 e n u m e r a t e e x t e n s i o n s ( D P C )
\ @ e n L a b = \ t o k s 2 1
)
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / g r a p h i c s / k e y v a l . s t y
P a c k a g e : k e y v a l 1 9 9 9 / 0 3 / 1 6 v 1 . 1 3 k e y = v a l u e p a r s e r ( D P C )
\ K V @ t o k s @ = \ t o k s 2 2
)
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / b a s e / i f t h e n . s t y
P a c k a g e : i f t h e n 2 0 0 1 / 0 5 / 2 6 v 1 . 1 c S t a n d a r d L a T e X i f t h e n p a c k a g e ( D P C )
) ( . / e m a t h M w . s t y
P a c k a g e : e m a t h M w 2 0 0 3 / 1 1 / 2 8 v 0 . 0 2 ? メ ヌ ヒ ? ? ヌ :
( . / e m a t h L b . s t y
P a c k a g e : e m a t h L b 2 0 0 3 / 1 1 / 2 8 v 0 . 0 0
)
\ @ m a w a r i k o m i s e p = \ d i m e n 1 3 4
\ m a w a r i k o m i s e p = \ d i m e n 1 3 5
\ m a w a r i k o m i k a n k a k u = \ d i m e n 1 3 6
\ E M W R @ b o x i = \ b o x 4 4
\ E M W R @ b o x i i = \ b o x 4 5
\ e i t e m i n d e n t = \ d i m e n 1 3 7
\ z u @ w i d t h = \ s k i p 4 8
\ z u i t e m w i d t h = \ s k i p 4 9
) ( . / e m a t h K . s t y )
\ e d a @ b o x = \ b o x 4 6
\ e d @ b e t a @ b o x = \ b o x 4 7
\ t e m p l a = \ d i m e n 1 3 8
\ t e m p l b = \ d i m e n 1 3 9
\ c @ e d a m o n @ s u u = \ c o u n t 1 0 5
\ e d a e n u m @ w d t h = \ d i m e n 1 4 0
\ e d a e n u m @ w d t h @ = \ d i m e n 1 4 1
\ l e f t m a r g i n @ o r g @ s = \ d i m e n 1 4 2
\ e d a i t e m i n d e n t = \ d i m e n 1 4 3
\ b e t a i t e m i n d e n t = \ d i m e n 1 4 4
\ b e t a @ l i n e w i d t h = \ d i m e n 1 4 5
\ e d a @ l i n e w i d t h = \ d i m e n 1 4 6
\ e d @ s e p = \ d i m e n 1 4 7
\ p r e @ e d a s e p = \ d i m e n 1 4 8
\ p o s t @ e d a s e p = \ d i m e n 1 4 9
\ p r e e d a e n u m s k i p = \ d i m e n 1 5 0
\ p o s t e d a e n u m s k i p = \ d i m e n 1 5 1
\ y o k o e n u m @ w d = \ d i m e n 1 5 2
\ c @ E n u m i = \ c o u n t 1 0 6
\ c @ E n u m i i = \ c o u n t 1 0 7
\ c @ E n u m i i i = \ c o u n t 1 0 8
\ c @ E n u m i v = \ c o u n t 1 0 9
\ e m t o k e n a = \ t o k s 2 3
) )
\ c @ t e m p c n t a = \ c o u n t 1 1 0
\ t e m p l c = \ d i m e n 1 5 3
\ t e m p b o x a = \ b o x 4 8
\ t e m p b o x b = \ b o x 4 9
\ E M c @ h i z y o s u u = \ c o u n t 1 1 1
\ E M c @ s y o u = \ c o u n t 1 1 2
\ E M c @ z y o @ a m a r i = \ c o u n t 1 1 3
\ G C M = \ c o u n t 1 1 4
\ z y o @ @ c = \ c o u n t 1 1 5
\ h i z y o @ @ c = \ c o u n t 1 1 6
\ w a r i @ @ c n t = \ c o u n t 1 1 7
\ w a r i @ @ c m a x = \ c o u n t 1 1 8
\ g y o u @ @ c = \ c o u n t 1 1 9
\ h i d a r i @ @ p = \ c o u n t 1 2 0
\ m i g i @ @ p = \ c o u n t 1 2 1
\ r e n r i t u @ h i d a r i y o h a k u = \ d i m e n 1 5 4
\ E M p h a n t o m b o x = \ b o x 5 0
\ f i l e o p h n d l = \ r e a d 1
) ( . / e m a t h P . s t y
P a c k a g e : e m a t h P 2 0 0 2 / 0 7 / 2 4 v 0 . 6 3
( . / e m a t h P p . s t y
P a c k a g e : e m a t h P p 2 0 0 3 / 1 1 / 0 7 v 0 . 2 1
( . / e m a t h P h . s t y
P a c k a g e : e m a t h P h 2 0 0 3 / 1 1 / 1 6 v 1 . 5 2
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / e e p i c / e p i c . s t y
E n h a n c e m e n t s t o P i c t u r e E n v i r o n m e n t . V e r s i o n 1 . 2 - R e l e a s e d J u n e 1 , 1 9 8 6
\ @ @ m u l t i c n t = \ c o u n t 1 2 2
\ d @ l t a = \ c o u n t 1 2 3
\ @ d e l t a = \ d i m e n 1 5 5
\ @ @ d e l t a = \ d i m e n 1 5 6
\ @ g r i d c n t = \ c o u n t 1 2 4
\ @ j o i n k i n d = \ c o u n t 1 2 5
\ @ d o t g a p = \ d i m e n 1 5 7
\ @ d d o t g a p = \ d i m e n 1 5 8
\ @ x @ d i f f = \ c o u n t 1 2 6
\ @ y @ d i f f = \ c o u n t 1 2 7
\ x @ d i f f = \ d i m e n 1 5 9
\ y @ d i f f = \ d i m e n 1 6 0
\ @ d o t b o x = \ b o x 5 1
\ n u m @ s e g m e n t s = \ c o u n t 1 2 8
\ n u m @ s e g m e n t s i = \ c o u n t 1 2 9
\ @ d a t a f i l e = \ r e a d 2
) ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / e e p i c / e e p i c . s t y
E x t e n s i o n t o E p i c a n d L a T e X . V e r s i o n 1 . 1 e - R e l e a s e d D e c 2 1 , 1 9 9 9
\ @ g p h l i n e w i d t h = \ c o u n t 1 3 0
\ @ e e p i c t c n t = \ c o u n t 1 3 1
\ @ t e m p d i m c = \ d i m e n 1 6 1
\ m a x o v a l d i a m = \ d i m e n 1 6 2
\ @ f i l l t y p e = \ b o x 5 2
) ( / u s r / l o c a l / s h a r e / t e x m f / p t e x / p l a t e x / m i s c / e c l a r i t h . s t y
e c l a r i t h . s t y 1 . 1 - - - J u l y 1 , 1 9 9 2
\ a r i ! A = \ d i m e n 1 6 3
\ a r i ! B = \ d i m e n 1 6 4
\ a r i ! C = \ c o u n t 1 3 2
\ a r i ! D = \ c o u n t 1 3 3
) ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / g r a p h i c s / g r a p h i c x . s t y
P a c k a g e : g r a p h i c x 1 9 9 9 / 0 2 / 1 6 v 1 . 0 f E n h a n c e d L a T e X G r a p h i c s ( D P C , S P Q R )
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / g r a p h i c s / g r a p h i c s . s t y
P a c k a g e : g r a p h i c s 2 0 0 1 / 0 7 / 0 7 v 1 . 0 n S t a n d a r d L a T e X G r a p h i c s ( D P C , S P Q R )
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / g r a p h i c s / t r i g . s t y
P a c k a g e : t r i g 1 9 9 9 / 0 3 / 1 6 v 1 . 0 9 s i n c o s t a n ( D P C )
)
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / c o n f i g / g r a p h i c s . c f g
F i l e : g r a p h i c s . c f g 2 0 0 1 / 0 8 / 3 1 v 1 . 1 g r a p h i c s c o n f i g u r a t i o n o f t e T e X / T e X L i v e
)
P a c k a g e g r a p h i c s I n f o : D r i v e r f i l e : d v i p s . d e f o n i n p u t l i n e 8 0 .
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / g r a p h i c s / d v i p s . d e f
F i l e : d v i p s . d e f 1 9 9 9 / 0 2 / 1 6 v 3 . 0 i D r i v e r - d e p e n d a n t f i l e ( D P C , S P Q R )
) )
\ G i n @ r e q @ h e i g h t = \ d i m e n 1 6 5
\ G i n @ r e q @ w i d t h = \ d i m e n 1 6 6
)
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / g r a p h i c s / c o l o r . s t y
P a c k a g e : c o l o r 1 9 9 9 / 0 2 / 1 6 v 1 . 0 i S t a n d a r d L a T e X C o l o r ( D P C )
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / c o n f i g / c o l o r . c f g
F i l e : c o l o r . c f g 2 0 0 1 / 0 8 / 3 1 v 1 . 1 c o l o r c o n f i g u r a t i o n o f t e T e X / T e X L i v e
)
P a c k a g e c o l o r I n f o : D r i v e r f i l e : d v i p s . d e f o n i n p u t l i n e 1 2 5 .
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / g r a p h i c s / d v i p s n a m . d e f
F i l e : d v i p s n a m . d e f 1 9 9 9 / 0 2 / 1 6 v 3 . 0 i D r i v e r - d e p e n d a n t f i l e ( D P C , S P Q R )
) )
\ @ t e m p d i m d = \ d i m e n 1 6 7
\ y a s e n @ t o k s = \ t o k s 2 4
\ @ t m p l a = \ d i m e n 1 6 8
\ r e c t b @ x = \ b o x 5 3
\ k a k o m i w a k u @ o u t = \ w r i t e 3
)
\ p l @ o u t = \ w r i t e 4
\ p l @ i n = \ r e a d 3
) ( . / e m a t h P x y . s t y
P a c k a g e : e m a t h P x y 2 0 0 3 / 1 1 / 1 7 v 0 . 2 4
\ x u n i t l e n g t h = \ d i m e n 1 6 9
\ y u n i t l e n g t h = \ d i m e n 1 7 0
)
( . / e m a t h P k . s t y
P a c k a g e : e m a t h P k 2 0 0 3 / 0 8 / 0 8 v 0 . 7 8
) ( . / e m a t h T . s t y
P a c k a g e : e m a t h T 2 0 0 3 / 1 1 / 2 8 v 0 . 2 0
( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / t o o l s / a r r a y . s t y
P a c k a g e : a r r a y 1 9 9 8 / 0 5 / 1 3 v 2 . 3 m T a b u l a r e x t e n s i o n p a c k a g e ( F M i )
\ c o l @ s e p = \ d i m e n 1 7 1
\ e x t r a r o w h e i g h t = \ d i m e n 1 7 2
\ N C @ l i s t = \ t o k s 2 5
\ e x t r a t a b s u r r o u n d = \ s k i p 5 0
\ b a c k u p @ l e n g t h = \ s k i p 5 1
) ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / t o o l s / h h l i n e . s t y
P a c k a g e : h h l i n e 1 9 9 4 / 0 5 / 2 3 v 2 . 0 3 T a b l e r u l e p a c k a g e ( D P C )
)
\ h y o u r e t u h a b a = \ d i m e n 1 7 3
\ e m T @ w = \ d i m e n 1 7 4
\ e m T @ h = \ d i m e n 1 7 5
\ e m T @ @ h = \ d i m e n 1 7 6
\ e m T @ d = \ d i m e n 1 7 7
\ e m T @ @ d = \ d i m e n 1 7 8
\ e m T @ r = \ d i m e n 1 7 9
\ a r r a y r u l e w i d t h b = \ d i m e n 1 8 0
) ) ( . / a n . a u x )
\ o p e n o u t 1 = ` a n . a u x ' .
L a T e X F o n t I n f o : C h e c k i n g d e f a u l t s f o r O M L / c m m / m / i t o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : . . . o k a y o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : C h e c k i n g d e f a u l t s f o r T 1 / c m r / m / n o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : . . . o k a y o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : C h e c k i n g d e f a u l t s f o r O T 1 / c m r / m / n o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : . . . o k a y o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : C h e c k i n g d e f a u l t s f o r O M S / c m s y / m / n o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : . . . o k a y o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : C h e c k i n g d e f a u l t s f o r O M X / c m e x / m / n o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : . . . o k a y o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : C h e c k i n g d e f a u l t s f o r U / c m r / m / n o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : . . . o k a y o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : C h e c k i n g d e f a u l t s f o r J Y 1 / m c / m / n o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : . . . o k a y o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : C h e c k i n g d e f a u l t s f o r J T 1 / m c / m / n o n i n p u t l i n e 5 .
L a T e X F o n t I n f o : . . . o k a y o n i n p u t l i n e 5 .
[ 1
]
( . / a n . a u x ) )
H e r e i s h o w m u c h o f T e X ' s m e m o r y y o u u s e d :
5 8 4 5 s t r i n g s o u t o f 9 5 5 9 9
5 6 8 0 4 s t r i n g c h a r a c t e r s o u t o f 1 1 9 2 0 8 8
1 7 6 7 6 9 w o r d s o f m e m o r y o u t o f 1 0 0 0 0 0 1
8 9 1 2 m u l t i l e t t e r c o n t r o l s e q u e n c e s o u t o f 1 0 0 0 0 + 5 0 0 0 0
8 3 8 0 w o r d s o f f o n t i n f o f o r 3 6 f o n t s , o u t o f 5 0 0 0 0 0 f o r 1 0 0 0
1 9 h y p h e n a t i o n e x c e p t i o n s o u t o f 1 0 0 0
4 8 i , 6 n , 4 2 p , 2 8 3 b , 3 5 8 s s t a c k p o s i t i o n s o u t o f 1 5 0 0 i , 5 0 0 n , 5 0 0 0 p , 2 0 0 0 0 0 b , 5 0 0 0 s
O u t p u t w r i t t e n o n a n . d v i ( 1 p a g e , 5 8 8 b y t e s ) .
\end{picture}
\end{document}
よろしくお願いします.
▼関連発言
│
└◆1097:\ArrowLineが見えません. [太郎] 05/14 02:27
└◆1098:Re:\ArrowLineが見えません. [tDB] 05/14 06:50
└◆1116:Re[2]:\ArrowLineが見えません. [太郎] 05/16 09:04
└◆1126:Re[3]:\ArrowLineが見えません. [tDB] 05/16 20:19
└◆1133:Re[4]:\ArrowLineが見えません. [太郎] 05/18 21:52<-last