emath BBS

新規発言一覧最新記事過去一覧検索HOME

No.1097  \ArrowLineが見えません.
発言者: 太郎
発言日: 2004 05/14 02:27
発言元: p14-dna02yakusima.kagoshima.ocn.ne.jp
Mac OS10.3.2 で桐木さんの ptex package (04年度版 v1.0) 
を使っております.しかし,
\ArrowLine が見えません.
どうしたら,見えるようになるでしょうか?
どなたかお願いします.
なお,サンプルとして,

\documentclass{jsarticle}
\usepackage{emath}
\usepackage{emathP}
\pagestyle{empty}
\begin{document}
\begin{picture}(100,100)
 \def\A{(0,0)} \def\B{(100,100)}
 \ArrowLine\A\B
 \end{picture}
\end{document}
 

を an.tex として保存しています.
なお,そのときの logファイルは以下のようです.


 T h i s   i s   p T e X ,   V e r s i o n   3 . 1 4 1 5 9 - p 3 . 1 . 3   ( s j i s )   ( W e b 2 C   7 . 4 . 5 )   ( f o r m a t = p l a t e x - s j i s   2 0 0 4 . 3 . 1 0 )     1 4   M A Y   2 0 0 4   0 2 : 1 4 
 \ w r i t e 1 8   e n a b l e d . 
 * * a n . t e x 
 ( . / a n . t e x 
 p L a T e X 2 e   < 2 0 0 1 / 0 9 / 0 4 > + 0   ( b a s e d   o n   L a T e X 2 e   < 2 0 0 1 / 0 6 / 0 1 >   p a t c h   l e v e l   0 ) 
 ( / u s r / l o c a l / s h a r e / t e x m f / p t e x / p l a t e x / j s / j s a r t i c l e . c l s 
 D o c u m e n t   C l a s s :   j s a r t i c l e   2 0 0 4 / 0 2 / 2 5   o k u m u r a 
 L a T e X   I n f o :   R e d e f i n i n g   \ s f f a m i l y   o n   i n p u t   l i n e   3 0 5 . 
 L a T e X   I n f o :   R e d e f i n i n g   \ t t f a m i l y   o n   i n p u t   l i n e   3 0 8 . 
 \ s y m m i n c h o = \ m a t h g r o u p 4 
 L a T e X   F o n t   I n f o :         O v e r w r i t i n g   s y m b o l   f o n t   ` m i n c h o '   i n   v e r s i o n   ` b o l d ' 
 ( F o n t )                                     J Y 1 / m c / m / n   - - >   J Y 1 / g t / m / n   o n   i n p u t   l i n e   3 1 6 . 
 L a T e X   I n f o :   R e d e f i n i n g   \ m a t h r m   o n   i n p u t   l i n e   3 1 8 . 
 L a T e X   I n f o :   R e d e f i n i n g   \ m a t h b f   o n   i n p u t   l i n e   3 1 9 . 
 L a T e X   F o n t   I n f o :         F o n t   s h a p e   ` J Y 1 / m c / m / n '   w i l l   b e 
 ( F o n t )                             s c a l e d   t o   s i z e   9 . 6 0 9 9 9 p t   o n   i n p u t   l i n e   3 6 7 . 
 L a T e X   F o n t   I n f o :         F o n t   s h a p e   ` J T 1 / m c / m / n '   w i l l   b e 
 ( F o n t )                             s c a l e d   t o   s i z e   9 . 6 0 9 9 9 p t   o n   i n p u t   l i n e   3 6 7 . 
 \ f u l l w i d t h = \ d i m e n 1 1 8 
 L a T e X   F o n t   I n f o :         F o n t   s h a p e   ` J Y 1 / m c / m / n '   w i l l   b e 
 ( F o n t )                             s c a l e d   t o   s i z e   7 . 6 8 7 9 9 p t   o n   i n p u t   l i n e   4 8 5 . 
 L a T e X   F o n t   I n f o :         F o n t   s h a p e   ` J T 1 / m c / m / n '   w i l l   b e 
 ( F o n t )                             s c a l e d   t o   s i z e   7 . 6 8 7 9 9 p t   o n   i n p u t   l i n e   4 8 5 . 
 \ c @ p a r t = \ c o u n t 8 1 
 \ c @ s e c t i o n = \ c o u n t 8 2 
 \ c @ s u b s e c t i o n = \ c o u n t 8 3 
 \ c @ s u b s u b s e c t i o n = \ c o u n t 8 4 
 \ c @ p a r a g r a p h = \ c o u n t 8 5 
 \ c @ s u b p a r a g r a p h = \ c o u n t 8 6 
 \ @ a b s t r a c t b o x = \ b o x 4 1 
 \ c @ f i g u r e = \ c o u n t 8 7 
 \ c @ t a b l e = \ c o u n t 8 8 
 \ a b o v e c a p t i o n s k i p = \ s k i p 4 1 
 \ b e l o w c a p t i o n s k i p = \ s k i p 4 2 
 \ @ l n u m w i d t h = \ d i m e n 1 1 9 
 \ b i b i n d e n t = \ d i m e n 1 2 0 
 L a T e X   I n f o :   R e d e f i n i n g   \ T e X   o n   i n p u t   l i n e   1 3 9 4 . 
 L a T e X   I n f o :   R e d e f i n i n g   \ L a T e X   o n   i n p u t   l i n e   1 4 1 6 . 
 L a T e X   I n f o :   R e d e f i n i n g   \ L a T e X e   o n   i n p u t   l i n e   1 4 3 7 . 
 \ h e i s e i = \ c o u n t 8 9 
 )   ( . / e m a t h . s t y 
 P a c k a g e :   e m a t h   2 0 0 3 / 1 1 / 2 8   v 0 . 9 9   ? ? ? ? ? ? ? w ノ } ノ N ノ ? ノ p ノ b ノ P ナ [ ノ W 
   ( . / e m a t h 2 e . s t y 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / a m s m a t h / a m s m a t h . s t y 
 P a c k a g e :   a m s m a t h   2 0 0 0 / 0 7 / 1 8   v 2 . 1 3   A M S   m a t h   f e a t u r e s 
 \ @ m a t h m a r g i n = \ s k i p 4 3 
 
 F o r   a d d i t i o n a l   i n f o r m a t i o n   o n   a m s m a t h ,   u s e   t h e   ` ? '   o p t i o n . 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / a m s m a t h / a m s t e x t . s t y 
 P a c k a g e :   a m s t e x t   2 0 0 0 / 0 6 / 2 9   v 2 . 0 1 
 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / a m s m a t h / a m s g e n . s t y 
 F i l e :   a m s g e n . s t y   1 9 9 9 / 1 1 / 3 0   v 2 . 0 
 \ @ e m p t y t o k s = \ t o k s 1 5 
 \ e x @ = \ d i m e n 1 2 1 
 ) ) 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / a m s m a t h / a m s b s y . s t y 
 P a c k a g e :   a m s b s y   1 9 9 9 / 1 1 / 2 9   v 1 . 2 d 
 \ p m b r a i s e @ = \ d i m e n 1 2 2 
 ) 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / a m s m a t h / a m s o p n . s t y 
 P a c k a g e :   a m s o p n   1 9 9 9 / 1 2 / 1 4   v 2 . 0 1   o p e r a t o r   n a m e s 
 ) 
 \ i n f @ b a d = \ c o u n t 9 0 
 L a T e X   I n f o :   R e d e f i n i n g   \ f r a c   o n   i n p u t   l i n e   2 1 1 . 
 \ u p r o o t @ = \ c o u n t 9 1 
 \ l e f t r o o t @ = \ c o u n t 9 2 
 L a T e X   I n f o :   R e d e f i n i n g   \ o v e r l i n e   o n   i n p u t   l i n e   3 0 7 . 
 \ c l a s s n u m @ = \ c o u n t 9 3 
 \ D O T S C A S E @ = \ c o u n t 9 4 
 L a T e X   I n f o :   R e d e f i n i n g   \ l d o t s   o n   i n p u t   l i n e   3 7 9 . 
 L a T e X   I n f o :   R e d e f i n i n g   \ d o t s   o n   i n p u t   l i n e   3 8 2 . 
 L a T e X   I n f o :   R e d e f i n i n g   \ c d o t s   o n   i n p u t   l i n e   4 6 7 . 
 \ M a t h s t r u t b o x @ = \ b o x 4 2 
 \ s t r u t b o x @ = \ b o x 4 3 
 \ b i g @ s i z e = \ d i m e n 1 2 3 
 L a T e X   F o n t   I n f o :         R e d e c l a r i n g   f o n t   e n c o d i n g   O M L   o n   i n p u t   l i n e   5 6 7 . 
 L a T e X   F o n t   I n f o :         R e d e c l a r i n g   f o n t   e n c o d i n g   O M S   o n   i n p u t   l i n e   5 6 8 . 
 \ m a c c @ d e p t h = \ c o u n t 9 5 
 \ c @ M a x M a t r i x C o l s = \ c o u n t 9 6 
 \ d o t s s p a c e @ = \ m u s k i p 1 0 
 \ c @ p a r e n t e q u a t i o n = \ c o u n t 9 7 
 \ d s p b r k @ l v l = \ c o u n t 9 8 
 \ t a g @ h e l p = \ t o k s 1 6 
 \ r o w @ = \ c o u n t 9 9 
 \ c o l u m n @ = \ c o u n t 1 0 0 
 \ m a x f i e l d s @ = \ c o u n t 1 0 1 
 \ a n d h e l p @ = \ t o k s 1 7 
 \ e q n s h i f t @ = \ d i m e n 1 2 4 
 \ a l i g n s e p @ = \ d i m e n 1 2 5 
 \ t a g s h i f t @ = \ d i m e n 1 2 6 
 \ t a g w i d t h @ = \ d i m e n 1 2 7 
 \ t o t w i d t h @ = \ d i m e n 1 2 8 
 \ l i n e h t @ = \ d i m e n 1 2 9 
 \ @ e n v b o d y = \ t o k s 1 8 
 \ m u l t l i n e g a p = \ s k i p 4 4 
 \ m u l t l i n e t a g g a p = \ s k i p 4 5 
 \ m a t h d i s p l a y @ s t a c k = \ t o k s 1 9 
 L a T e X   I n f o :   R e d e f i n i n g   \ [   o n   i n p u t   l i n e   2 6 6 6 . 
 L a T e X   I n f o :   R e d e f i n i n g   \ ]   o n   i n p u t   l i n e   2 6 6 7 . 
 ) 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / a m s f o n t s / a m s s y m b . s t y 
 P a c k a g e :   a m s s y m b   2 0 0 2 / 0 1 / 2 2   v 2 . 2 d 
 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / a m s f o n t s / a m s f o n t s . s t y 
 P a c k a g e :   a m s f o n t s   2 0 0 1 / 1 0 / 2 5   v 2 . 2 f 
 \ s y m A M S a = \ m a t h g r o u p 5 
 \ s y m A M S b = \ m a t h g r o u p 6 
 L a T e X   F o n t   I n f o :         O v e r w r i t i n g   m a t h   a l p h a b e t   ` \ m a t h f r a k '   i n   v e r s i o n   ` b o l d ' 
 ( F o n t )                                     U / e u f / m / n   - - >   U / e u f / b / n   o n   i n p u t   l i n e   1 3 2 . 
 ) )   ( . / e m a t h C . s t y 
 P a c k a g e :   e m a t h C   2 0 0 3 / 1 1 / 1 6   v 0 . 1 6 
 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / t o o l s / c a l c . s t y 
 P a c k a g e :   c a l c   1 9 9 8 / 0 7 / 0 7   v 4 . 1 b   I n f i x   a r i t h m e t i c   ( K K T , F J ) 
 \ c a l c @ A c o u n t = \ c o u n t 1 0 2 
 \ c a l c @ B c o u n t = \ c o u n t 1 0 3 
 \ c a l c @ A d i m e n = \ d i m e n 1 3 0 
 \ c a l c @ B d i m e n = \ d i m e n 1 3 1 
 \ c a l c @ A s k i p = \ s k i p 4 6 
 \ c a l c @ B s k i p = \ s k i p 4 7 
 L a T e X   I n f o :   R e d e f i n i n g   \ s e t l e n g t h   o n   i n p u t   l i n e   5 9 . 
 L a T e X   I n f o :   R e d e f i n i n g   \ a d d t o l e n g t h   o n   i n p u t   l i n e   6 0 . 
 \ c a l c @ d e n o m i n a t o r = \ c o u n t 1 0 4 
 ) 
 \ e m a t h @ t o k s @ = \ t o k s 2 0 
 \ S e t t @ w i d t h = \ d i m e n 1 3 2 
 \ E M c a l c @ A = \ d i m e n 1 3 3 
 )   ( . / e m a t h E . s t y 
 P a c k a g e :   e m a t h E   2 0 0 3 / 0 9 / 1 9   v 0 . 5 9   ? g ? 」 e n u m e r a t e 
 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / t o o l s / e n u m e r a t e . s t y 
 P a c k a g e :   e n u m e r a t e   1 9 9 9 / 0 3 / 0 5   v 3 . 0 0   e n u m e r a t e   e x t e n s i o n s   ( D P C ) 
 \ @ e n L a b = \ t o k s 2 1 
 ) 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / g r a p h i c s / k e y v a l . s t y 
 P a c k a g e :   k e y v a l   1 9 9 9 / 0 3 / 1 6   v 1 . 1 3   k e y = v a l u e   p a r s e r   ( D P C ) 
 \ K V @ t o k s @ = \ t o k s 2 2 
 ) 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / b a s e / i f t h e n . s t y 
 P a c k a g e :   i f t h e n   2 0 0 1 / 0 5 / 2 6   v 1 . 1 c   S t a n d a r d   L a T e X   i f t h e n   p a c k a g e   ( D P C ) 
 )   ( . / e m a t h M w . s t y 
 P a c k a g e :   e m a t h M w   2 0 0 3 / 1 1 / 2 8   v 0 . 0 2   ? メ ヌ ヒ ? ? ヌ : 
 
 ( . / e m a t h L b . s t y 
 P a c k a g e :   e m a t h L b   2 0 0 3 / 1 1 / 2 8   v   0 . 0 0 
 ) 
 \ @ m a w a r i k o m i s e p = \ d i m e n 1 3 4 
 \ m a w a r i k o m i s e p = \ d i m e n 1 3 5 
 \ m a w a r i k o m i k a n k a k u = \ d i m e n 1 3 6 
 \ E M W R @ b o x i = \ b o x 4 4 
 \ E M W R @ b o x i i = \ b o x 4 5 
 \ e i t e m i n d e n t = \ d i m e n 1 3 7 
 \ z u @ w i d t h = \ s k i p 4 8 
 \ z u i t e m w i d t h = \ s k i p 4 9 
 )   ( . / e m a t h K . s t y ) 
 \ e d a @ b o x = \ b o x 4 6 
 \ e d @ b e t a @ b o x = \ b o x 4 7 
 \ t e m p l a = \ d i m e n 1 3 8 
 \ t e m p l b = \ d i m e n 1 3 9 
 \ c @ e d a m o n @ s u u = \ c o u n t 1 0 5 
 \ e d a e n u m @ w d t h = \ d i m e n 1 4 0 
 \ e d a e n u m @ w d t h @ = \ d i m e n 1 4 1 
 \ l e f t m a r g i n @ o r g @ s = \ d i m e n 1 4 2 
 \ e d a i t e m i n d e n t = \ d i m e n 1 4 3 
 \ b e t a i t e m i n d e n t = \ d i m e n 1 4 4 
 \ b e t a @ l i n e w i d t h = \ d i m e n 1 4 5 
 \ e d a @ l i n e w i d t h = \ d i m e n 1 4 6 
 \ e d @ s e p = \ d i m e n 1 4 7 
 \ p r e @ e d a s e p = \ d i m e n 1 4 8 
 \ p o s t @ e d a s e p = \ d i m e n 1 4 9 
 \ p r e e d a e n u m s k i p = \ d i m e n 1 5 0 
 \ p o s t e d a e n u m s k i p = \ d i m e n 1 5 1 
 \ y o k o e n u m @ w d = \ d i m e n 1 5 2 
 \ c @ E n u m i = \ c o u n t 1 0 6 
 \ c @ E n u m i i = \ c o u n t 1 0 7 
 \ c @ E n u m i i i = \ c o u n t 1 0 8 
 \ c @ E n u m i v = \ c o u n t 1 0 9 
 \ e m t o k e n a = \ t o k s 2 3 
 ) ) 
 \ c @ t e m p c n t a = \ c o u n t 1 1 0 
 \ t e m p l c = \ d i m e n 1 5 3 
 \ t e m p b o x a = \ b o x 4 8 
 \ t e m p b o x b = \ b o x 4 9 
 \ E M c @ h i z y o s u u = \ c o u n t 1 1 1 
 \ E M c @ s y o u = \ c o u n t 1 1 2 
 \ E M c @ z y o @ a m a r i = \ c o u n t 1 1 3 
 \ G C M = \ c o u n t 1 1 4 
 \ z y o @ @ c = \ c o u n t 1 1 5 
 \ h i z y o @ @ c = \ c o u n t 1 1 6 
 \ w a r i @ @ c n t = \ c o u n t 1 1 7 
 \ w a r i @ @ c m a x = \ c o u n t 1 1 8 
 \ g y o u @ @ c = \ c o u n t 1 1 9 
 \ h i d a r i @ @ p = \ c o u n t 1 2 0 
 \ m i g i @ @ p = \ c o u n t 1 2 1 
 \ r e n r i t u @ h i d a r i y o h a k u = \ d i m e n 1 5 4 
 \ E M p h a n t o m b o x = \ b o x 5 0 
 \ f i l e o p h n d l = \ r e a d 1 
 )   ( . / e m a t h P . s t y 
 P a c k a g e :   e m a t h P   2 0 0 2 / 0 7 / 2 4   v   0 . 6 3 
   ( . / e m a t h P p . s t y 
 P a c k a g e :   e m a t h P p   2 0 0 3 / 1 1 / 0 7   v   0 . 2 1 
   ( . / e m a t h P h . s t y 
 P a c k a g e :   e m a t h P h   2 0 0 3 / 1 1 / 1 6   v   1 . 5 2 
 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / e e p i c / e p i c . s t y 
 E n h a n c e m e n t s   t o   P i c t u r e   E n v i r o n m e n t .   V e r s i o n   1 . 2   -   R e l e a s e d   J u n e   1 ,   1 9 8 6 
 \ @ @ m u l t i c n t = \ c o u n t 1 2 2 
 \ d @ l t a = \ c o u n t 1 2 3 
 \ @ d e l t a = \ d i m e n 1 5 5 
 \ @ @ d e l t a = \ d i m e n 1 5 6 
 \ @ g r i d c n t = \ c o u n t 1 2 4 
 \ @ j o i n k i n d = \ c o u n t 1 2 5 
 \ @ d o t g a p = \ d i m e n 1 5 7 
 \ @ d d o t g a p = \ d i m e n 1 5 8 
 \ @ x @ d i f f = \ c o u n t 1 2 6 
 \ @ y @ d i f f = \ c o u n t 1 2 7 
 \ x @ d i f f = \ d i m e n 1 5 9 
 \ y @ d i f f = \ d i m e n 1 6 0 
 \ @ d o t b o x = \ b o x 5 1 
 \ n u m @ s e g m e n t s = \ c o u n t 1 2 8 
 \ n u m @ s e g m e n t s i = \ c o u n t 1 2 9 
 \ @ d a t a f i l e = \ r e a d 2 
 )   ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / e e p i c / e e p i c . s t y 
 E x t e n s i o n   t o   E p i c   a n d   L a T e X .   V e r s i o n   1 . 1 e   -   R e l e a s e d   D e c   2 1 ,   1 9 9 9 
 \ @ g p h l i n e w i d t h = \ c o u n t 1 3 0 
 \ @ e e p i c t c n t = \ c o u n t 1 3 1 
 \ @ t e m p d i m c = \ d i m e n 1 6 1 
 \ m a x o v a l d i a m = \ d i m e n 1 6 2 
 \ @ f i l l t y p e = \ b o x 5 2 
 )   ( / u s r / l o c a l / s h a r e / t e x m f / p t e x / p l a t e x / m i s c / e c l a r i t h . s t y 
 e c l a r i t h . s t y   1 . 1   - - -   J u l y   1 ,   1 9 9 2 
 \ a r i ! A = \ d i m e n 1 6 3 
 \ a r i ! B = \ d i m e n 1 6 4 
 \ a r i ! C = \ c o u n t 1 3 2 
 \ a r i ! D = \ c o u n t 1 3 3 
 )   ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / g r a p h i c s / g r a p h i c x . s t y 
 P a c k a g e :   g r a p h i c x   1 9 9 9 / 0 2 / 1 6   v 1 . 0 f   E n h a n c e d   L a T e X   G r a p h i c s   ( D P C , S P Q R ) 
 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / g r a p h i c s / g r a p h i c s . s t y 
 P a c k a g e :   g r a p h i c s   2 0 0 1 / 0 7 / 0 7   v 1 . 0 n   S t a n d a r d   L a T e X   G r a p h i c s   ( D P C , S P Q R ) 
 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / g r a p h i c s / t r i g . s t y 
 P a c k a g e :   t r i g   1 9 9 9 / 0 3 / 1 6   v 1 . 0 9   s i n   c o s   t a n   ( D P C ) 
 ) 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / c o n f i g / g r a p h i c s . c f g 
 F i l e :   g r a p h i c s . c f g   2 0 0 1 / 0 8 / 3 1   v 1 . 1   g r a p h i c s   c o n f i g u r a t i o n   o f   t e T e X / T e X L i v e 
 ) 
 P a c k a g e   g r a p h i c s   I n f o :   D r i v e r   f i l e :   d v i p s . d e f   o n   i n p u t   l i n e   8 0 . 
 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / g r a p h i c s / d v i p s . d e f 
 F i l e :   d v i p s . d e f   1 9 9 9 / 0 2 / 1 6   v 3 . 0 i   D r i v e r - d e p e n d a n t   f i l e   ( D P C , S P Q R ) 
 ) ) 
 \ G i n @ r e q @ h e i g h t = \ d i m e n 1 6 5 
 \ G i n @ r e q @ w i d t h = \ d i m e n 1 6 6 
 ) 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / g r a p h i c s / c o l o r . s t y 
 P a c k a g e :   c o l o r   1 9 9 9 / 0 2 / 1 6   v 1 . 0 i   S t a n d a r d   L a T e X   C o l o r   ( D P C ) 
 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / c o n f i g / c o l o r . c f g 
 F i l e :   c o l o r . c f g   2 0 0 1 / 0 8 / 3 1   v 1 . 1   c o l o r   c o n f i g u r a t i o n   o f   t e T e X / T e X L i v e 
 ) 
 P a c k a g e   c o l o r   I n f o :   D r i v e r   f i l e :   d v i p s . d e f   o n   i n p u t   l i n e   1 2 5 . 
 
 ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / g r a p h i c s / d v i p s n a m . d e f 
 F i l e :   d v i p s n a m . d e f   1 9 9 9 / 0 2 / 1 6   v 3 . 0 i   D r i v e r - d e p e n d a n t   f i l e   ( D P C , S P Q R ) 
 ) ) 
 \ @ t e m p d i m d = \ d i m e n 1 6 7 
 \ y a s e n @ t o k s = \ t o k s 2 4 
 \ @ t m p l a = \ d i m e n 1 6 8 
 \ r e c t b @ x = \ b o x 5 3 
 \ k a k o m i w a k u @ o u t = \ w r i t e 3 
 ) 
 \ p l @ o u t = \ w r i t e 4 
 \ p l @ i n = \ r e a d 3 
 )   ( . / e m a t h P x y . s t y 
 P a c k a g e :   e m a t h P x y   2 0 0 3 / 1 1 / 1 7   v   0 . 2 4 
 \ x u n i t l e n g t h = \ d i m e n 1 6 9 
 \ y u n i t l e n g t h = \ d i m e n 1 7 0 
 ) 
 ( . / e m a t h P k . s t y 
 P a c k a g e :   e m a t h P k   2 0 0 3 / 0 8 / 0 8   v   0 . 7 8 
 )   ( . / e m a t h T . s t y 
 P a c k a g e :   e m a t h T   2 0 0 3 / 1 1 / 2 8   v 0 . 2 0 
   ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / t o o l s / a r r a y . s t y 
 P a c k a g e :   a r r a y   1 9 9 8 / 0 5 / 1 3   v 2 . 3 m   T a b u l a r   e x t e n s i o n   p a c k a g e   ( F M i ) 
 \ c o l @ s e p = \ d i m e n 1 7 1 
 \ e x t r a r o w h e i g h t = \ d i m e n 1 7 2 
 \ N C @ l i s t = \ t o k s 2 5 
 \ e x t r a t a b s u r r o u n d = \ s k i p 5 0 
 \ b a c k u p @ l e n g t h = \ s k i p 5 1 
 )   ( / u s r / l o c a l / s h a r e / t e x m f / t e x / l a t e x / t o o l s / h h l i n e . s t y 
 P a c k a g e :   h h l i n e   1 9 9 4 / 0 5 / 2 3   v 2 . 0 3   T a b l e   r u l e   p a c k a g e   ( D P C ) 
 ) 
 \ h y o u r e t u h a b a = \ d i m e n 1 7 3 
 \ e m T @ w = \ d i m e n 1 7 4 
 \ e m T @ h = \ d i m e n 1 7 5 
 \ e m T @ @ h = \ d i m e n 1 7 6 
 \ e m T @ d = \ d i m e n 1 7 7 
 \ e m T @ @ d = \ d i m e n 1 7 8 
 \ e m T @ r = \ d i m e n 1 7 9 
 \ a r r a y r u l e w i d t h b = \ d i m e n 1 8 0 
 ) )   ( . / a n . a u x ) 
 \ o p e n o u t 1   =   ` a n . a u x ' . 
 
 L a T e X   F o n t   I n f o :         C h e c k i n g   d e f a u l t s   f o r   O M L / c m m / m / i t   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         . . .   o k a y   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         C h e c k i n g   d e f a u l t s   f o r   T 1 / c m r / m / n   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         . . .   o k a y   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         C h e c k i n g   d e f a u l t s   f o r   O T 1 / c m r / m / n   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         . . .   o k a y   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         C h e c k i n g   d e f a u l t s   f o r   O M S / c m s y / m / n   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         . . .   o k a y   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         C h e c k i n g   d e f a u l t s   f o r   O M X / c m e x / m / n   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         . . .   o k a y   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         C h e c k i n g   d e f a u l t s   f o r   U / c m r / m / n   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         . . .   o k a y   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         C h e c k i n g   d e f a u l t s   f o r   J Y 1 / m c / m / n   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         . . .   o k a y   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         C h e c k i n g   d e f a u l t s   f o r   J T 1 / m c / m / n   o n   i n p u t   l i n e   5 . 
 L a T e X   F o n t   I n f o :         . . .   o k a y   o n   i n p u t   l i n e   5 . 
   [ 1 
 
 ] 
 ( . / a n . a u x )   )   
 H e r e   i s   h o w   m u c h   o f   T e X ' s   m e m o r y   y o u   u s e d : 
   5 8 4 5   s t r i n g s   o u t   o f   9 5 5 9 9 
   5 6 8 0 4   s t r i n g   c h a r a c t e r s   o u t   o f   1 1 9 2 0 8 8 
   1 7 6 7 6 9   w o r d s   o f   m e m o r y   o u t   o f   1 0 0 0 0 0 1 
   8 9 1 2   m u l t i l e t t e r   c o n t r o l   s e q u e n c e s   o u t   o f   1 0 0 0 0 + 5 0 0 0 0 
   8 3 8 0   w o r d s   o f   f o n t   i n f o   f o r   3 6   f o n t s ,   o u t   o f   5 0 0 0 0 0   f o r   1 0 0 0 
   1 9   h y p h e n a t i o n   e x c e p t i o n s   o u t   o f   1 0 0 0 
   4 8 i , 6 n , 4 2 p , 2 8 3 b , 3 5 8 s   s t a c k   p o s i t i o n s   o u t   o f   1 5 0 0 i , 5 0 0 n , 5 0 0 0 p , 2 0 0 0 0 0 b , 5 0 0 0 s 
 
 O u t p u t   w r i t t e n   o n   a n . d v i   ( 1   p a g e ,   5 8 8   b y t e s ) . 
 \end{picture}
\end{document}

よろしくお願いします.

▼関連発言

1097:\ArrowLineが見えません. [太郎] 05/14 02:27
 └1098:Re:\ArrowLineが見えません. [tDB] 05/14 06:50
  └1116:Re[2]:\ArrowLineが見えません. [太郎] 05/16 09:04
   └1126:Re[3]:\ArrowLineが見えません. [tDB] 05/16 20:19
    └1133:Re[4]:\ArrowLineが見えません. [太郎] 05/18 21:52<-last

Pass 保存


CGIROOM