&size(24){''\iPgozyohou''};
 整数係数1変数整式の最大公約数を互除法で求める筆算を表示します。
#contents
#br

*定義されているスタイルファイル [#qca46b9d]
emathQf.sty

*書式 [#te1c53b0]
\iPgozyohou<#1>[#2]#3#4
-#1: key=val
-#2: 最大公約数を受け取る制御綴
-#3, #4: 2つの整式の係数を csv 形式で与える

#1 における有効な key は
:[[sityuu>#sityuu]]| 筆算を表現する array環境の支柱を指定

*例 [#w2d20fbe]
**基本例 [#mda13f79]
 2つの整式の最大公約数をユークリッドの互除法で求める過程を筆算形式で表示します。
 下の例では
   x^2-1, x^3-1
 の最大公約数が x-1 であることを示しています。
#ref(iPgozyohou01.png)
**係数の共通因数処理 [#pbad7f3c]
 下の例では,第1回の除法
   x^3-1 を x^2-2x+1 で割ったとき
 余りは 3x-3 となりますが,係数に共通因数があります。
 共通因数で括りだした残り x-1 を余りとみなして,以後の計算を行います。
#ref(insuu01.png)
**分数係数 [#bcae970a]
 A=2x^2-3x+1=(x-1)(2x-1) と
 B=3x^2-4x+1=(x-1)(3x-1) の最大公約数は x-1 ですが,
 これを互除法で求めようとすると,第一歩の B を A で割ることすらできません。
 B を2倍して計算すれば可能ですが.....
#ref(bunsuu01.png)
 \iPgozyohou では,強引に分数係数を持ち出して実行することにしています。
#ref(bunsuu02.png)
 もう少し込み入った例です。
&aname(sityuu);
#ref(bunsuu03.png)
-係数に分数が登場するので~
  <sityuu=\protect\bsityuu>~
により,array環境の行間を広くしています。
*関連事項 [#g80003cc]
+[[筆算]]
+[[\gozyohou>gozyohou]]
RIGHT:&counter;


トップ   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS